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ABSTRACT  

One aim of this work is to investigate the feasibility of using a hierarchy of models to describe diffusion tensor MRI data. Parsimonious model selection 
criteria are used to choose among diffusion models having different degrees of symmetry: isotropic, cylindrically symmetric and fully anisotropic. Based on this 
information, we assess whether we can perform simultaneous tissue segmentation and classification. Both numerical phantoms and diffusion weighted image (DWI) 
data obtained from excised rat spinal cord are used to test and validate this model selection and clustering framework. Three criteria are used for parsimonious model 
selection: the F-test t-test (F-t) proposed by Hext, the F-test F-test (F-F) adapted from Snedecor, and the Schwarz Criterion (SC). Due to its high sensitivity to the 
variance estimate and bias in sorting eigenvalues, the F-F and SC are preferred for segmenting models having cylindrical symmetry.  
INTRODUCTION 

In this work we examine whether parsimonious model selection criteria applied to a hierarchy of diffusion models can provide simultaneous tissue 
segmentation and classification based on underlying diffusion properties. A hierarchy of diffusion models and a statistical hypothesis-testing framework were used in 
the context of the first MR measurement of the translational diffusion tensor to determine whether proton diffusion was isotropic or anisotropic in water and in a 
skeletal muscle phantom. Subsequently, the possibility of using diffusion models with different degrees of symmetry was proposed to describe diffusion transport in 
tissue.  In this work we test the appropriateness and relative efficiency of four predefined diffusion models: isotropic ( λ1 = λ2 = λ3), general anisotropic ( λ1> λ2 > λ3), 

and cylindrically symmetric, i.e., prolate ( λ1 > λ2 = λ3
) and oblate ( λ1 = λ2 > λ3). Three methods for parsimonious model selection used here are based on the F-test, t-test, 

and the Schwarz Criterion. 
THEORY 

First, we estimate all 6 independent elements of the symmetric diffusion tensor, D, and the log of the signal, log[S(0)], in the absence of the diffusion-
weighting, which when written as a vector becomes: 

  

) 

D = [Dxx,Dyy,Dzz,Dxy,Dxz,Dyz,log[S(0)]] . For cylindrically symmetric (oblate and prolate) models the number of free 

parameters to estimate is reduced from 7 to 5: [α , β ,θ ,ϕ , log[S(0)]], where α , β  are simple functions of the eigenvalues of D, and θ ,ϕ are the spherical coordinates 

parametrizing the unit eigenvector parallel to the axis of symmetry.  For the isotropic model the number of unknown parameters is 2: [D, log[S(0)]]. 

The F-test in F-t hierarchical model selection approach [1] is: F0,iso
F −t = (SST −SSI )/(fpT − fpI )

(SSSig−SST )/(n − fpT )
, where fpT = 7 and fpI  = 2 are the numbers of the free 

parameters in the general anisotropic and isotropic models respectively; n is the number of experimental data points; and SSSig, SST , and SSI  are the total sums of the 

squares of the acquired signals, and the fitted signals for the anisotropic and isotropic models, respectively. The null hypothesis, that two eigenvalues are equal, can be 
evaluated using a modification of Hext’s t-test: t = (λi −λj) s2(ei −e j ′ ) ( ′ J J)−1(ei −e j)  where i =1 and j =2 for the oblate model, i =2 and j =3 for the prolate model, 

( ′ J J)−1  is the inverse of the Hessian that approximates the variance/covariance matrix of the estimated parameters, s2 is the estimate of the residual mean square error on 

(n −7) degrees of freedom, and e i  is the estimated normalized eigenvector associated with the corresponding estimated eigenvalue, λi .  

In the F-F scheme [2], we use an F-test for both model selection steps: F0
F−F =

(RSSR − RSST )/(fp
T

− fp
R

)
RSSR /(n − fp

T
−1)

 where RSSR is the residual sum of squares for the 

reduced model (isotropic: fpR =2; prolate or oblate: fpR  = 5), and RSST is the residual sum of squares for the general anisotropic model ( fpT = 7). 

The SC [3] method imposes a penalty for models with a larger number of free parameters and a larger mean squared residual error. It is defined 

as: SCi = log(RSSi n)+ fpi (log(n) n)  
METHODS 
 The excised rat spinal cord sample was imaged in a 5-mm NMR tube, using a 14.1-T narrow bore magnet with a Bruker Avance imaging console.  A 
diffusion-weighted spin echo pulse sequence was used with TR = 1177 ms, TE  = 25 ms, FOV = 4.3×4.3 mm, matrix = 72 × 72 with 300 µm thick slices, NEX=7. Each  
diffusion-weighted scan was collected with diffusion gradient strength, G = 664 mT/m, corresponding to a b-value of 1250 s/mm2, applied along 46 different direction.  
The diffusion gradient pulse duration was δ=1.5 ms, and the gradient separation was ∆ = 17.5 ms. The total imaging time was less than 10 hours. 
RESULTS 
 The T2-weighted amplitude image of the excised rat spinal cord is shown in Figure 1.  Figures 2 and 3 show consistent assignment of diffusion properties in 
white and gray matter regions within rat spinal cord.  

               
Fig 1: T2-weighted image.                           Fig2.  Model maps for a) F-t; b) F-F; c) SC approaches                Fig 3: 3D visualization of F-F based segmentation  
 
DISCUSSION and CONCLUSION 

The maps produced by the proposed parsimonious model selection schemes provide useful information about the underlying tissue microstructure in each 
voxel. The simplicity and speed of applying F- and t-tests make these proposed approaches feasible for large DWI data sets routinely encountered in high-resolution 
microscopic DT-MRI studies or in clinical DT-MRI applications. Results of the phantom simulations increase our confidence in model selection schemes based upon 
statistical hypothesis tests. When applied to ex vivo tissue specimens, where background noise is the primary artifact and other systematic artifacts can be remedied, this 
approach should work robustly. When using DWI data from living tissue, tests for Gaussianity of the distribution of residuals and for the degree of homoscedasticity 
must be performed. Our expectation is that these model selection procedures may lead to improved methods of automatic region of interest (ROI) delineation and 
classification of different tissue types in DT-MRI volume data sets. 
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